Generic placeholder image

Recent Patents on Anti-Cancer Drug Discovery

Editor-in-Chief

ISSN (Print): 1574-8928
ISSN (Online): 2212-3970

Review Article

A Patent Review of Human Dihydroorotate Dehydrogenase (hDHODH) Inhibitors as Anticancer Agents and their Other Therapeutic Applications (1999-2022)

Author(s): Pinky Gehlot and Vivek K. Vyas*

Volume 19, Issue 3, 2024

Published on: 10 May, 2023

Page: [280 - 297] Pages: 18

DOI: 10.2174/1574892818666230417094939

Price: $65

Abstract

Highly proliferating cells, such as cancer cells, are in high demand of pyrimidine nucleotides for their proliferation, accomplished by de novo pyrimidine biosynthesis. The human dihydroorotate dehydrogenase (hDHODH) enzyme plays a vital role in the rate-limiting step of de novo pyrimidine biosynthesis. As a recognised therapeutic target, hDHODH plays a significant role in cancer and other illness. In the past two decades, small molecules as inhibitors hDHODH enzyme have drawn much attention as anticancer agents, and their role in rheumatoid arthritis (RA), and multiple sclerosis (MS). In this patent review, we have compiled patented hDHODH inhibitors published between 1999 and 2022 and discussed the development of hDHODH inhibitors as anticancer agents. Therapeutic potential of small molecules as hDHODH inhibitors for the treatment of various diseases, such as cancer, is very well recognised. Human DHODH inhibitors can rapidly cause intracellular uridine monophosphate (UMP) depletion to produce starvation of pyrimidine bases. Normal cells can better endure a brief period of starvation without the side effects of conventional cytotoxic medication and resume synthesis of nucleic acid and other cellular functions after inhibition of de novo pathway using an alternative salvage pathway. Highly proliferative cells such as cancer cells do not endure starvation because they are in high demand of nucleotides for cell differentiation, which is fulfilled by de novo pyrimidine biosynthesis. In addition, hDHODH inhibitors produce their desired activity at lower doses rather than a cytotoxic dose of other anticancer agents. Thus, inhibition of de novo pyrimidine biosynthesis will create new prospects for the development of novel targeted anticancer agents, which ongoing preclinical and clinical experiments define. Our work brings together a comprehensive patent review of the role of hDHODH in cancer, as well as various patents related to the hDHODH inhibitors and their anticancer and other therapeutic potential. This compiled work on patented DHODH inhibitors will guide researchers in pursuing the most promising drug discovery strategies against the hDHODH enzyme as anticancer agents.

Keywords: Human dihydroorotate dehydrogenase (hDHODH), hDHODH inhibitors, de novo pyrimidine synthesis, cancer, anticancer agents, pyrimidine nucleotides.

[1]
Evans DR, Guy HI. Mammalian pyrimidine biosynthesis: Fresh insights into an ancient pathway. J Biol Chem 2004; 279(32): 33035-8.
[http://dx.doi.org/10.1074/jbc.R400007200] [PMID: 15096496]
[2]
Vyas VK, Ghate M. Recent developments in the medicinal chemistry and therapeutic potential of dihydroorotate dehydrogenase (DHODH) inhibitors. Mini Rev Med Chem 2011; 11(12): 1039-55.
[http://dx.doi.org/10.2174/138955711797247707] [PMID: 21861807]
[3]
Barnes T, Parry P, Hart I, Jones C, Minet M, Patterson D. Regional mapping of the gene encoding dihydroorotate dehydrogenase, an enzyme involved in UMP synthesis, electron transport, and superoxide generation, to human chromosome region 16q22. Somat Cell Mol Genet 1993; 19(4): 405-11.
[http://dx.doi.org/10.1007/BF01232751] [PMID: 8211381]
[4]
Sørensen P, Dandanell G. A new type of dihydroorotate dehydrogenase, type 1S, from the thermoacidophilic archaeon Sulfolobus solfataricus. Extremophiles 2002; 6(3): 245-51.
[http://dx.doi.org/10.1007/s00792-001-0249-0] [PMID: 12072960]
[5]
Fairbanks LD, Bofill M, Ruckemann K, Simmonds HA. Importance of ribonucleotide availability to proliferating T-lymphocytes from healthy humans. Disproportionate expansion of pyrimidine pools and contrasting effects of de novo synthesis inhibitors. J Biol Chem 1995; 270(50): 29682-9.
[http://dx.doi.org/10.1074/jbc.270.50.29682] [PMID: 8530356]
[6]
Mathur D, Stratikopoulos E, Ozturk S, et al. PTEN regulates glutamine flux to pyrimidine synthesis and sensitivity to dihydroorotate dehydrogenase inhibition. Cancer Discov 2017; 7(4): 380-90.
[http://dx.doi.org/10.1158/2159-8290.CD-16-0612] [PMID: 28255082]
[7]
Lewis TA, Sykes DB, Law JM, et al. Development of ML390: A human DHODH inhibitor that induces differentiation in acute myeloid leukemia. ACS Med Chem Lett 2016; 7(12): 1112-7.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00316] [PMID: 27994748]
[8]
Mascia L. Uracil salvage pathway in PC12 cells. Biochim Biophys Acta, Gen Subj 2000; 1524(1): 45-50.
[http://dx.doi.org/10.1016/S0304-4165(00)00139-2]
[9]
Löffler M, Fairbanks L, Zameitat E, Marinaki A, Simmonds H. Pyrimidine pathways in health and disease. Trends Mol Med 2005; 11(9): 430-7.
[http://dx.doi.org/10.1016/j.molmed.2005.07.003] [PMID: 16098809]
[10]
Brown JM, Giaccia AJ. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res 1998; 58(7): 1408-16.
[PMID: 9537241]
[11]
Reis RAG, Calil FA, Feliciano PR, Pinheiro MP, Nonato MC. The dihydroorotate dehydrogenases: Past and present. Arch Biochem Biophys 2017; 632: 175-91.
[http://dx.doi.org/10.1016/j.abb.2017.06.019] [PMID: 28666740]
[12]
Lane AN, Fan TWM. Regulation of mammalian nucleotide metabolism and biosynthesis. Nucleic Acids Res 2015; 43(4): 2466-85.
[http://dx.doi.org/10.1093/nar/gkv047] [PMID: 25628363]
[13]
Wang X, Yang K, Wu Q, et al. Targeting pyrimidine synthesis accentuates molecular therapy response in glioblastoma stem cells. Sci Transl Med 2019; 11(504): eaau4972.
[http://dx.doi.org/10.1126/scitranslmed.aau4972] [PMID: 31391321]
[14]
Aleman V, Handler P. Dihydroorotate dehydrogenase. J Biol Chem 1967; 242(18): 4087-96.
[http://dx.doi.org/10.1016/S0021-9258(18)95783-2] [PMID: 6061701]
[15]
Björnberg O, Grüner AC, Roepstorff P, Jensen KF. The activity of Escherichia coli dihydroorotate dehydrogenase is dependent on a conserved loop identified by sequence homology, mutagenesis, and limited proteolysis. Biochemistry 1999; 38(10): 2899-908.
[http://dx.doi.org/10.1021/bi982352c] [PMID: 10074342]
[16]
Palfey BA, Björnberg O, Jensen KF. Insight into the chemistry of flavin reduction and oxidation in Escherichia coli dihydroorotate dehydrogenase obtained by rapid reaction studies. Biochemistry 2001; 40(14): 4381-90.
[http://dx.doi.org/10.1021/bi0025666] [PMID: 11284694]
[17]
Hey-Mogensen M, Goncalves RLS, Orr AL, Brand MD. Production of superoxide/H2O2 by dihydroorotate dehydrogenase in rat skeletal muscle mitochondria. Free Radic Biol Med 2014; 72: 149-55.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.04.007] [PMID: 24746616]
[18]
Nielsen FS, Andersen PS, Jensen KF. The B form of dihydroorotate dehydrogenase from Lactococcus lactis consists of two different subunits, encoded by the pyrDb and pyrK genes, and contains FMN, FAD, and [FeS] redox centers. J Biol Chem 1996; 271(46): 29359-65.
[http://dx.doi.org/10.1074/jbc.271.46.29359] [PMID: 8910599]
[19]
Rawls J, Knecht W, Diekert K, Lill R, Löffler M. Requirements for the mitochondrial import and localization of dihydroorotate dehydrogenase. Eur J Biochem 2000; 267(7): 2079-87.
[http://dx.doi.org/10.1046/j.1432-1327.2000.01213.x] [PMID: 10727948]
[20]
Rodriguez JMO, Krupinska E, Wacklin-Knecht H, Knecht W. Preparation of human dihydroorotate dehydrogenase for interaction studies with lipid bilayers. Nucleosides Nucleotides Nucleic Acids 2020; 39(10-12): 1306-19.
[http://dx.doi.org/10.1080/15257770.2019.1708100] [PMID: 31997699]
[21]
Leban J, Kralik M, Mies J, Gassen M, Tentschert K, Baumgartner R. SAR, species specificity, and cellular activity of cyclopentene dicarboxylic acid amides as DHODH inhibitors. Bioorg Med Chem Lett 2005; 15(21): 4854-7.
[http://dx.doi.org/10.1016/j.bmcl.2005.07.053] [PMID: 16143532]
[22]
Baumgartner R, Walloschek M, Kralik M, et al. Dual binding mode of a novel series of DHODH inhibitors. J Med Chem 2006; 49(4): 1239-47.
[http://dx.doi.org/10.1021/jm0506975] [PMID: 16480261]
[23]
Rich PR, Maréchal A. The mitochondrial respiratory chain. Essays Biochem 2010; 47: 1-23.
[http://dx.doi.org/10.1042/bse0470001] [PMID: 20533897]
[24]
Miyazaki Y, Inaoka DK, Shiba T, et al. Selective cytotoxicity of dihydroorotate dehydrogenase inhibitors to human cancer cells under hypoxia and nutrient-deprived conditions. Front Pharmacol 2018; 9: 997.
[http://dx.doi.org/10.3389/fphar.2018.00997] [PMID: 30233375]
[25]
Fang J, Uchiumi T, Yagi M, et al. Dihydro-orotate dehydrogenase is physically associated with the respiratory complex and its loss leads to mitochondrial dysfunction. Biosci Rep 2013; 33(2): e00021.
[http://dx.doi.org/10.1042/BSR20120097] [PMID: 23216091]
[26]
Popova G, Ladds MJGW, Johansson L, et al. Optimization of tetrahydroindazoles as inhibitors of human dihydroorotate dehydrogenase and evaluation of their activity and in vitro metabolic stability. J Med Chem 2020; 63(8): 3915-34.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01658] [PMID: 32212728]
[27]
Zhu S, Yan X, Xiang Z, Ding HF, Cui H. Leflunomide reduces proliferation and induces apoptosis in neuroblastoma cells in vitro and in vivo. PLoS One 2013; 8(8): e71555.
[http://dx.doi.org/10.1371/journal.pone.0071555] [PMID: 23977077]
[28]
Chen Y, Huang Q, Zhou H, Wang Y, Hu X, Li T. Inhibition of canonical WNT/β-catenin signaling is involved in leflunomide (LEF)-mediated cytotoxic effects on renal carcinoma cells. Oncotarget 2016; 7(31): 50401-16.
[http://dx.doi.org/10.18632/oncotarget.10409] [PMID: 27391060]
[29]
Yin S, Kabashima T, Zhu Q, Shibata T, Kai M. Fluorescence assay of dihydroorotate dehydrogenase that may become a cancer biomarker. Sci Rep 2017; 7(1): 40670.
[http://dx.doi.org/10.1038/srep40670] [PMID: 28084471]
[30]
O’Connor P, Wolinsky JS, Confavreux C, et al. Randomized trial of oral teriflunomide for relapsing multiple sclerosis. N Engl J Med 2011; 365(14): 1293-303.
[http://dx.doi.org/10.1056/NEJMoa1014656] [PMID: 21991951]
[31]
Khutornenko AA, Roudko VV, Chernyak BV, Vartapetian AB, Chumakov PM, Evstafieva AG. Pyrimidine biosynthesis links mitochondrial respiration to the p53 pathway. Proc Natl Acad Sci 2010; 107(29): 12828-33.
[http://dx.doi.org/10.1073/pnas.0910885107] [PMID: 20566882]
[32]
Brandon M, Baldi P, Wallace DC. Mitochondrial mutations in cancer. Oncogene 2006; 25(34): 4647-62.
[http://dx.doi.org/10.1038/sj.onc.1209607] [PMID: 16892079]
[33]
Idelchik MPS, Begley U, Begley TJ, Melendez JA. Mitochondrial ROS control of cancer. Semin Cancer Biol 2017; 47: 57-66.
[http://dx.doi.org/10.1016/j.semcancer.2017.04.005] [PMID: 28445781]
[34]
Hail N Jr, Chen P, Kepa JJ, Bushman LR, Shearn C. Dihydroorotate dehydrogenase is required for N-(4-hydroxyphenyl)retinamide-induced reactive oxygen species production and apoptosis. Free Radic Biol Med 2010; 49(1): 109-16.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.04.006] [PMID: 20399851]
[35]
Mohamad Fairus AK, Choudhary B, Hosahalli S, Kavitha N, Shatrah O. Dihydroorotate dehydrogenase (DHODH) inhibitors affect ATP depletion, endogenous ROS and mediate S-phase arrest in breast cancer cells. Biochimie 2017; 135: 154-63.
[http://dx.doi.org/10.1016/j.biochi.2017.02.003] [PMID: 28196676]
[36]
Davis JP, Cain GA, Pitts WJ, Magolda RL, Copeland RA. The immunosuppressive metabolite of leflunomide is a potent inhibitor of human dihydroorotate dehydrogenase. Biochemistry 1996; 35(4): 1270-3.
[http://dx.doi.org/10.1021/bi952168g] [PMID: 8573583]
[37]
O’Donnell EF, Saili KS, Koch DC, et al. The anti-inflammatory drug leflunomide is an agonist of the aryl hydrocarbon receptor. PLoS One 2010; 5(10): e13128.
[http://dx.doi.org/10.1371/journal.pone.0013128] [PMID: 20957046]
[38]
Ren A, Fu G, Qiu Y, Cui H. Leflunomide inhibits proliferation and tumorigenesis of oral squamous cell carcinoma. Mol Med Rep 2017; 16(6): 9125-30.
[http://dx.doi.org/10.3892/mmr.2017.7755] [PMID: 29039518]
[39]
Zhang C, Chu M. Leflunomide: A promising drug with good antitumor potential. Biochem Biophys Res Commun 2018; 496(2): 726-30.
[http://dx.doi.org/10.1016/j.bbrc.2018.01.107] [PMID: 29357281]
[40]
Basu G, Mohapatra A, Manipadam MT, Mani SE, John GT. Leflunomide with low-dose everolimus for treatment of Kaposi’s sarcoma in a renal allograft recipient. Nephrol Dial Transplant 2011; 26(10): 3412-5.
[http://dx.doi.org/10.1093/ndt/gfr416] [PMID: 21775763]
[41]
Mustapha N, Barra L, Carette S, et al. Efficacy of leflunomide in the treatment of vasculitis. Clin Exp Rheumatol 2021; 39(2): 114-8.
[http://dx.doi.org/10.55563/clinexprheumatol/ve38dj] [PMID: 33200732]
[42]
Ozturk S, Mathur D, Zhou RW, Mulholland D, Parsons R. Leflunomide triggers synthetic lethality in PTEN-deficient prostate cancer. Prostate Cancer Prostatic Dis 2020; 23(4): 718-23.
[http://dx.doi.org/10.1038/s41391-020-0251-1] [PMID: 32661432]
[43]
Jin R, Liu B, Liu X, et al. Leflunomide suppresses the growth of LKB1-inactivated tumors in the immune-competent host and attenuates distant cancer metastasis. Mol Cancer Ther 2021; 20(2): 274-83.
[http://dx.doi.org/10.1158/1535-7163.MCT-20-0567] [PMID: 33293343]
[44]
Bruneau JM, Yea CM, Spinella-Jaegle S, et al. Purification of human dihydro-orotate dehydrogenase and its inhibition by A77 1726, the active metabolite of leflunomide. Biochem J 1998; 336(2): 299-303.
[http://dx.doi.org/10.1042/bj3360299] [PMID: 9820804]
[45]
Freedman MS. Teriflunomide in relapsing multiple sclerosis: therapeutic utility. Ther Adv Chronic Dis 2013; 4(5): 192-205.
[http://dx.doi.org/10.1177/2040622313492810] [PMID: 23997924]
[46]
Li L, Liu J, Delohery T, Zhang D, Arendt C, Jones C. The effects of teriflunomide on lymphocyte subpopulations in human peripheral blood mononuclear cells in vitro. J Neuroimmunol 2013; 265(1-2): 82-90.
[http://dx.doi.org/10.1016/j.jneuroim.2013.10.003] [PMID: 24182769]
[47]
Allington D, Rivey M, Nwankwo E. Emerging oral immunomodulating agents-focus on teriflunomide for the treatment of multiple sclerosis. Degener Neurol Neuromuscul Dis 2012; 2: 15-28.
[http://dx.doi.org/10.2147/DNND.S29022]
[48]
Balagué C, Pont M, Prats N, Godessart N. Profiling of dihydroorotate dehydrogenase, p38 and JAK inhibitors in the rat adjuvant-induced arthritis model: A translational study. Br J Phar 2012; 166(4): 1320-32.
[http://dx.doi.org/10.1111/j.1476-5381.2012.01836.x] [PMID: 22229697]
[49]
Jiang L, Zhang W, Li W, Ling C, Jiang M. Anti-inflammatory drug, leflunomide and its metabolite teriflunomide inhibit NSCLC proliferation in vivo and in vitro. Toxicol Lett 2018; 282: 154-65.
[http://dx.doi.org/10.1016/j.toxlet.2017.10.013] [PMID: 29050931]
[50]
Peters GJ, Sharma SL, Laurensse E, Pinedo HM. Inhibition of pyrimidine de novo synthesis by DUP-785 (NSC 368390). Invest New Drugs 1987; 5(3): 235-44.
[http://dx.doi.org/10.1007/BF00175293] [PMID: 2822596]
[51]
Cappelli A, Pericot Mohr G, Gallelli A, et al. Design, synthesis, structural studies, biological evaluation, and computational simulations of novel potent AT(1) angiotensin II receptor antagonists based on the 4-phenylquinoline structure. J Med Chem 2004; 47(10): 2574-86.
[http://dx.doi.org/10.1021/jm031100t] [PMID: 15115399]
[52]
Urba S, Doroshow J, Cripps C, et al. Multicenter phase II trial of brequinar sodium in patients with advanced squamous-cell carcinoma of the head and neck. Cancer Chemother Pharmacol 1992; 31(2): 167-9.
[http://dx.doi.org/10.1007/BF00685106] [PMID: 1451236]
[53]
Maroun J, Ruckdeschel J, Natale R, et al. Multicenter phase II study of brequinar sodium in patients with advanced lung cancer. Cancer Chemother Pharmacol 1993; 32(1): 64-6.
[http://dx.doi.org/10.1007/BF00685878] [PMID: 8384937]
[54]
Moore M, Maroun J, Robert F, et al. Multicenter phase II study of brequinar sodium in patients with advanced gastrointestinal cancer Invest New Drugs 1993; 11(1): 61-5.
[http://dx.doi.org/10.1007/BF00873913]
[55]
Schwartsmann G, Dodion P, Vermorken JB, et al. Phase I study of Brequinar sodium (NSC 368390) in patients with solid malignancies. Cancer Chemother Pharmacol 1990; 25(5): 345-51.
[http://dx.doi.org/10.1007/BF00686235] [PMID: 2306795]
[56]
Natale R, Wheeler R, Moore M, et al. Short report: Multicenter phase II trial of brequinar sodium in patients with advanced melanoma. Ann Oncol 1992; 3(8): 659-60.
[http://dx.doi.org/10.1093/oxfordjournals.annonc.a058298] [PMID: 1450049]
[57]
Munier-Lehmann H, Vidalain PO, Tangy F, Janin YL. On dihydroorotate dehydrogenases and their inhibitors and uses. J Med Chem 2013; 56(8): 3148-67.
[http://dx.doi.org/10.1021/jm301848w] [PMID: 23452331]
[58]
Löffler M, Becker C, Wegerle E, Schuster G. Catalytic enzyme histochemistry and biochemical analysis of dihydroorotate dehydrogenase/oxidase and succinate dehydrogenase in mammalian tissues, cells and mitochondria. Histochem Cell Biol 1996; 105(2): 119-28.
[http://dx.doi.org/10.1007/BF01696151] [PMID: 8852433]
[59]
Peters GJ. Re-evaluation of Brequinar sodium, a dihydroorotate dehydrogenase inhibitor. Nucleosides Nucleotides Nucleic Acids 2018; 37(12): 666-78.
[http://dx.doi.org/10.1080/15257770.2018.1508692] [PMID: 30663496]
[60]
Kulkarni OP, Sayyed SG, Kantner C, et al. 4SC-101, a novel small molecule dihydroorotate dehydrogenase inhibitor, suppresses systemic lupus erythematosus in MRL-(Fas)lpr mice. Am J Pathol 2010; 176(6): 2840-7.
[http://dx.doi.org/10.2353/ajpath.2010.091227] [PMID: 20413687]
[61]
Muehler A, Peelen E, Kohlhof H, Gröppel M, Vitt D. Vidofludimus calcium, a next generation DHODH inhibitor for the Treatment of relapsing-remitting multiple sclerosis. Mult Scler Relat Disord 2020; 43: 102129.
[http://dx.doi.org/10.1016/j.msard.2020.102129] [PMID: 32428844]
[62]
Fitzpatrick LR, Small JS, Doblhofer R, Ammendola A. Vidofludimus inhibits colonic interleukin-17 and improves hapten-induced colitis in rats by a unique dual mode of action. J Pharmacol Exp Ther 2012; 342(3): 850-60.
[http://dx.doi.org/10.1124/jpet.112.192203] [PMID: 22691298]
[63]
Zhu Y, Xu S, Lu Y, et al. Repositioning an immunomodulatory drug vidofludimus as a farnesoid X receptor modulator with therapeutic effects on NAFLD. Front Pharmacol 2020; 11: 590.
[http://dx.doi.org/10.3389/fphar.2020.00590] [PMID: 32477115]
[64]
Herrlinger KR, Diculescu M, Fellermann K, et al. Efficacy, safety and tolerability of vidofludimus in patients with inflammatory bowel disease: The ENTRANCE study. J Crohn’s Colitis 2013; 7(8): 636-43.
[http://dx.doi.org/10.1016/j.crohns.2012.09.016] [PMID: 23078909]
[65]
Rusai K, Schmaderer C, Baumann M, et al. Immunosuppression with 4SC-101, a novel inhibitor of dihydroorotate dehydrogenase, in a rat model of renal transplantation. Transplantation 2012; 93(11): 1101-7.
[http://dx.doi.org/10.1097/TP.0b013e31824fd861] [PMID: 22609757]
[66]
Fitzpatrick LR, Deml L, Hofmann C, et al. 4SC-101, a novel immunosuppressive drug, inhibits IL-17 and attenuates colitis in two murine models of inflammatory bowel disease. Inflamm Bowel Dis 2010; 16(10): 1763-77.
[http://dx.doi.org/10.1002/ibd.21264] [PMID: 20310011]
[67]
Christian S, Merz C, Evans L, et al. The novel dihydroorotate dehydrogenase (DHODH) inhibitor BAY 2402234 triggers differentiation and is effective in the treatment of myeloid malignancies. Leukemia 2019; 33(10): 2403-15.
[http://dx.doi.org/10.1038/s41375-019-0461-5] [PMID: 30940908]
[68]
Sainas S, Pippione AC, Lupino E, et al. Targeting myeloid differentiation using potent 2-hydroxypyrazolo[1,5- a ]pyridine scaffold-Based human dihydroorotate dehydrogenase inhibitors. J Med Chem 2018; 61(14): 6034-55.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00373] [PMID: 29939742]
[69]
Sykes DB, Kfoury YS, Mercier FE, et al. Inhibition of dihydroorotate dehydrogenase overcomes differentiation blockade in acute myeloid leukemia. Cell 2016; 167(1): 171-186.e15.
[http://dx.doi.org/10.1016/j.cell.2016.08.057] [PMID: 27641501]
[70]
Cao L, Weetall M, Trotta C, et al. Targeting of hematologic malignancies with PTC299, a novel potent inhibitor of dihydroorotate dehydrogenase with favorable pharmaceutical properties. Mol Cancer Ther 2019; 18(1): 3-16.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-0863] [PMID: 30352802]
[71]
Kayamori K, Nagai Y, Zhong C, et al. DHODH inhibition synergizes with DNA-demethylating agents in the treatment of myelodysplastic syndromes. Blood Adv 2021; 5(2): 438-50.
[http://dx.doi.org/10.1182/bloodadvances.2020001461] [PMID: 33496740]
[72]
Jianbiao Zhou , Yvonne Ng , Jing-Yuan Chooi , et al. ASLAN003, a potent dihydroorotate dehydrogenase inhibitor for differentiation of acute myeloid leukemia. Haematologica 2019; 105(9): 2286-97.
[http://dx.doi.org/10.3324/haematol.2019.230482] [PMID: 33054053]
[73]
McDonald G, Chubukov V, Coco J, et al. Selective vulnerability to pyrimidine starvation in hematologic malignancies revealed by AG-636, a novel clinical-stage inhibitor of dihydroorotate dehydrogenase. Mol Cancer Ther 2020; 19(12): 2502-15.
[http://dx.doi.org/10.1158/1535-7163.MCT-20-0550] [PMID: 33082276]
[74]
Azmi AS, Aboukameel A, Al-Hallak MN, et al. Abstract 234: A novel, small molecule inhibitor of dihydroorotate dehydrogenase (DHODH), RP7214, potentiates activity of chemotherapeutics in breast and colorectal cancers. Cancer Res 2020; 80 (Suppl. 16): 234-4.
[http://dx.doi.org/10.1158/1538-7445.AM2020-234]
[75]
Zhang L, Zhang J, Wang J, et al. Recent advances of human dihydroorotate dehydrogenase inhibitors for cancer therapy: Current development and future perspectives. Eur J Med Chem 2022; 232: 114176.
[http://dx.doi.org/10.1016/j.ejmech.2022.114176] [PMID: 35151222]
[76]
Housman G, Byler S, Heerboth S, et al. Drug resistance in cancer: An overview. Cancers 2014; 6(3): 1769-92.
[http://dx.doi.org/10.3390/cancers6031769] [PMID: 25198391]
[77]
Kaye SB. New antimetabolites in cancer chemotherapy and their clinical impact. Br J Cancer 1998; 78(S3): 1-7.
[http://dx.doi.org/10.1038/bjc.1998.747] [PMID: 9717984]
[78]
Parker WB. Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer. Chem Rev 2009; 109(7): 2880-93.
[http://dx.doi.org/10.1021/cr900028p] [PMID: 19476376]
[79]
Weber G. Reciprocal regulation: Recognition of pattern of gene expression in cancer cells. Adv Enzyme Regul 2002; 42: 83-100.
[http://dx.doi.org/10.1016/S0065-2571(01)00042-5] [PMID: 12123708]
[80]
Hubackova S, Davidova E, Boukalova S, et al. Replication and ribosomal stress induced by targeting pyrimidine synthesis and cellular checkpoints suppress p53-deficient tumors. Cell Death Dis 2020; 11(2): 110.
[http://dx.doi.org/10.1038/s41419-020-2224-7] [PMID: 32034120]
[81]
Zhang Y, Lu H. Signaling to p53: Ribosomal proteins find their way. Cancer Cell 2009; 16(5): 369-77.
[http://dx.doi.org/10.1016/j.ccr.2009.09.024] [PMID: 19878869]
[82]
Boukalova S, Hubackova S, Milosevic M, Ezrova Z, Neuzil J, Rohlena J. Dihydroorotate dehydrogenase in oxidative phosphorylation and cancer. Biochim Biophys Acta Mol Basis Dis 2020; 1866(6): 165759.
[http://dx.doi.org/10.1016/j.bbadis.2020.165759] [PMID: 32151633]
[83]
Huisman WH, Raivio KO, Becker MA. Simultaneous estimation of rates of pyrimidine and purine nucleotide synthesis de novo in cultured human cells. J Biol Chem 1979; 254(24): 12595-602.
[http://dx.doi.org/10.1016/S0021-9258(19)86356-1] [PMID: 500731]
[84]
Jackson RC, Lui MS, Boritzki TJ, Morris HP, Weber G. Purine and pyrimidine nucleotide patterns of normal, differentiating, and regenerating liver and of hepatomas in rats. Cancer Res 1980; 40(4): 1286-91.
[PMID: 7053201]
[85]
Sigoillot FD, Berkowski JA, Sigoillot SM, Kotsis DH, Guy HI. Cell cycle-dependent regulation of pyrimidine biosynthesis. J Biol Chem 2003; 278(5): 3403-9.
[http://dx.doi.org/10.1074/jbc.M211078200] [PMID: 12438317]
[86]
Madak JT, Bankhead A III, Cuthbertson CR, Showalter HD, Neamati N. Revisiting the role of dihydroorotate dehydrogenase as a therapeutic target for cancer. Pharmacol Ther 2019; 195: 111-31.
[http://dx.doi.org/10.1016/j.pharmthera.2018.10.012] [PMID: 30347213]
[87]
Li L, Ng SR, Colón CI, et al. Identification of DHODH as a therapeutic target in small cell lung cancer. Sci Transl Med 2019; 11(517): eaaw7852.
[http://dx.doi.org/10.1126/scitranslmed.aaw7852] [PMID: 31694929]
[88]
White RM, Cech J, Ratanasirintrawoot S, et al. DHODH modulates transcriptional elongation in the neural crest and melanoma. Nature 2011; 471(7339): 518-22.
[http://dx.doi.org/10.1038/nature09882] [PMID: 21430780]
[89]
Nikolaus GS, Duy N, Knut E, et al. 2,4,5-trisubstituted 1,2,4- triazolones useful as inhibitors of DHODH. Patent W018/077923, 2015.
[90]
Strikoudis A, Lazaris C, Trimarchi T, et al. Regulation of transcriptional elongation in pluripotency and cell differentiation by the PHD-finger protein Phf5a. Nat Cell Biol 2016; 18(11): 1127-38.
[http://dx.doi.org/10.1038/ncb3424] [PMID: 27749823]
[91]
Tan JL, Fogley RD, Flynn RA, et al. Stress from nucleotide depletion activates the transcriptional regulator HEXIM1 to suppress melanoma. Mol Cell 2016; 62(1): 34-46.
[http://dx.doi.org/10.1016/j.molcel.2016.03.013] [PMID: 27058786]
[92]
Schwab W, Czech J, Boslett K. Use of isoxazole and crotonamide derivatives for the treatment of carcinomatous disorders. Patent US005886033A, 1999.
[93]
Leban J, Kramer B, Saeb W, et al. Compounds as anti-inflammatory, immunomodulatory and anti-proliferatory agents. Patent US20060199856A1, 2006.
[94]
Leban J, Kramer B, Saeb W, et al. Compounds as anti-inflammatory, immunomodulatory and anti-proliferatory agents. Patent US007176241B2, 2007.
[95]
Leban J, Kramer B, Baumgartner R, et al. Method of identifying inhibitors of DHODH. Patent US007247736B2, 2007.
[96]
Leban J, Kramer B, Baumgartner R, et al. Method of Identifying Inhibitors of DHODH. Patent US20070224672A1, 2007.
[97]
Mclean LR, Subramaniam A, Vaz RJ, et al. Amino-benzoic acid derivatives for use in the treatment of dihydrogenase-related disorders. Patent US20120208855A1, 2012.
[98]
Li Honglin. Thiazole derivative and applications. Patent US010919869B2, 2021.
[99]
Li H, Xu Y, Wang R, et al. Thiazole derivative and applications. Patent US20190292162A1, 2019.
[100]
Castro P, Julio CL, Terricabras BE,. Azabiphenylaminobenzoic acid derivatives as DHODH inhibitors. Patent US20110212945A1, 2011.
[101]
Castro P, Julio CL, Terricabras B, Sola EE,. Azabiphenylaminobenzoic acid derivatives as DHODH inhibitors. Patent US008536165B2, 2013.
[102]
Castro P, Julio CL, Terricabras B,. Azabiphenylaminobenzoic acid derivatives as DHODH inhibitors. Patent US2014005178A1, 2014.
[103]
Castro P, Julio CL, Erra Sola M. Amino nicotinic and isonicotinic acid derivatives as DHODH inhibitors. Patent US20120294854A1, 2012.
[104]
Castro P, Julio CL, Erra Sola M. Amino nicotinic and isonicotinic acid derivatives as DHODH inhibitors. Patent US008258308B2, 2012.
[105]
Palomino Castro, Cesar Laria Julio, Erra Sola M. Amino nicotinic and isonicotinic acid derivatives as DHODH inhibitors. Patent US008691852B2, 2014.
[106]
Godessart Marina N, Pizcueta Lalanza MP. Combinations comprising methotrexate and DHODH inhibitors. Patent US20110280831A1, 2011.
[107]
Godessart Marina N, Pizcueta Lalanza MP. Combinations comprising methotrexate and DHODH inhibitors. Patent US008865728B2, 2014.
[108]
Zon L, White RM. Methods for treatment of melanoma. Patent US20140031383A1, 2014.
[109]
Zon L, White RM. Methods for treatment of melanoma. Patent US010016402B2, 2018.
[110]
Zon L, White RM. Methods for treatment of melanoma. Patent US20190117635A1, 2019.
[111]
Zon L, White RM. Methods for treatment of melanoma. Patent US010646478B2, 2020.
[112]
Zon L, White RM. Methods for treatment of melanoma. Patent US20150328204A1, 2015.
[113]
Zon L, White RM. Inhibitors of dihydroorotate dehydrogenase. Patent US20200215038A1, 2020.
[114]
Odge J. Novel methods for treating neurodegenerative diseases. Patent US20160287549A1, 2016.
[115]
Dumas B, Lounis N. Novel selection marker for cell transfection and protein production. Patent US20200199543A1, 2020.
[116]
Dumas B, Lounis N. Novel selection marker for cell transfection and protein production. Patent US20170335292A1, 2017.
[117]
Dumas B, Lounis N. Novel selection marker for cell transfection and protein production. Patent US010557125B2, 2020.
[118]
Sykes DB, Scadden D, Lewis TA, et al. Compounds and methods useful for treating or preventing hematological cancers. Patent US20180263970A1, 2018.
[119]
Sykes DB, Scadden D, Lewis TA, et al. Compounds and methods useful for treating or preventing hematological cancers. Patent US011096934B2, 2021.
[120]
Kumar VS, Hesson DP. Compositions and methods for inhibiting dihydroorotate dehydrogenase. Patent US20190290634A1, 2019.
[121]
Kumar VS, Hesson DP. Compositions and methods for inhibiting dihydroorotate dehydrogenase. Patent US20210154186A1, 2021.
[122]
Kumar VS, Hesson DP, Huang P, et al. Compositions and methods for inhibiting dihydroorotate dehydrogenase. Patent US010889548B2, 2021.
[123]
Si Y, Keenan MC. Treatment of tumors incorporating mutant isocitrat dehydrogenase. Patent US20190025313A1, 2019.
[124]
Si Y, Keenan MC. Treatment of tumors incorporating mutant isocitrate dehydrogenase. Patent US20210088520A1, 2021.
[125]
Deans R, Okesli A, Morgens D, et al. Use of a DHODH inhibitor in combination with an inhibitor of pyrimidine salvage. Patent US20190209598A1, 2019.
[126]
Deans R, Okesli A, Morgens D, et al. Use of a DHODH inhibitor in combination with an inhibitor of pyrimidine salvage. Patent US010736911B2, 2020.
[127]
Lindmark B, Ooi AGL. Cancer therapy. Patent US20190038610A1, 2019.
[128]
Lindmark B, Ooi AGL. Cancer therapy. Patent US20190151326A1, 2019.
[129]
Thunuguntla SSR, Hosahalli S, Panigrahi SK, et al. 1, 4, 6-trisubstituted-2-alkyl-1H-benzo [D] imidazole derivatives as dihydroorotate oxygenase inhibitors. Patent US20200140395A1, 2020.
[130]
Cao L, Weetall M. DHODH inhibitor for use in treating hematologic cancers. Patent US20200253940A1, 2020.
[131]
Sykes DB. The emergence of dihydroorotate dehydrogenase (DHODH) as a therapeutic target in acute myeloid leukemia. Expert Opin Ther Targets 2018; 22(11): 893-8.
[http://dx.doi.org/10.1080/14728222.2018.1536748] [PMID: 30318938]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy